As per the given graph, choose the correct representation for curve $$\mathrm{A}$$ and curve B.
Where $$\mathrm{X}_{\mathrm{C}}=$$ reactance of pure capacitive circuit connected with A.C. source
$$\mathrm{X}_{\mathrm{L}}=$$ reactance of pure inductive circuit connected with $$\mathrm{A} . \mathrm{C}$$. source
R = impedance of pure resistive circuit connected with A.C. source.
$$\mathrm{Z}=$$ Impedance of the LCR series circuit $$\}$$
The current sensitivity of moving coil galvanometer is increased by $$25 \%$$. This increase is achieved only by changing in the number of turns of coils and area of cross section of the wire while keeping the resistance of galvanometer coil constant. The percentage change in the voltage sensitivity will be:
The equation of wave is given by
$$\mathrm{Y}=10^{-2} \sin 2 \pi(160 t-0.5 x+\pi / 4)$$
where $$x$$ and $$Y$$ are in $$\mathrm{m}$$ and $$\mathrm{t}$$ in $$s$$. The speed of the wave is ________ $$\mathrm{km} ~\mathrm{h}^{-1}$$.
As shown in the figure, a configuration of two equal point charges $$\left(q_{0}=+2 \mu \mathrm{C}\right)$$ is placed on an inclined plane. Mass of each point charge is $$20 \mathrm{~g}$$. Assume that there is no friction between charge and plane. For the system of two point charges to be in equilibrium (at rest) the height $$\mathrm{h}=x \times 10^{-3} \mathrm{~m}$$.
The value of $$x$$ is ____________.
(Take $$\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2}, g=10 \mathrm{~m} \mathrm{~s}^{-2}$$ )