Area of the region $$\left\{(x, y): x^{2}+(y-2)^{2} \leq 4, x^{2} \geq 2 y\right\}$$ is
Let $$\vec{a}$$ be a non-zero vector parallel to the line of intersection of the two planes described by $$\hat{i}+\hat{j}, \hat{i}+\hat{k}$$ and $$\hat{i}-\hat{j}, \hat{j}-\hat{k}$$. If $$\theta$$ is the angle between the vector $$\vec{a}$$ and the vector $$\vec{b}=2 \hat{i}-2 \hat{j}+\hat{k}$$ and $$\vec{a} \cdot \vec{b}=6$$, then the ordered pair $$(\theta,|\vec{a} \times \vec{b}|)$$ is equal to :
The number of triplets $$(x, \mathrm{y}, \mathrm{z})$$, where $$x, \mathrm{y}, \mathrm{z}$$ are distinct non negative integers satisfying $$x+y+z=15$$, is :
The number of integral solutions $$x$$ of $$\log _{\left(x+\frac{7}{2}\right)}\left(\frac{x-7}{2 x-3}\right)^{2} \geq 0$$ is :