Let $$f(x)=\left[x^{2}-x\right]+|-x+[x]|$$, where $$x \in \mathbb{R}$$ and $$[t]$$ denotes the greatest integer less than or equal to $$t$$. Then, $$f$$ is :
Consider ellipses $$\mathrm{E}_{k}: k x^{2}+k^{2} y^{2}=1, k=1,2, \ldots, 20$$. Let $$\mathrm{C}_{k}$$ be the circle which touches the four chords joining the end points (one on minor axis and another on major axis) of the ellipse $$\mathrm{E}_{k}$$. If $$r_{k}$$ is the radius of the circle $$\mathrm{C}_{k}$$, then the value of $$\sum_\limits{k=1}^{20} \frac{1}{r_{k}^{2}}$$ is :
Area of the region $$\left\{(x, y): x^{2}+(y-2)^{2} \leq 4, x^{2} \geq 2 y\right\}$$ is
Let $$\vec{a}$$ be a non-zero vector parallel to the line of intersection of the two planes described by $$\hat{i}+\hat{j}, \hat{i}+\hat{k}$$ and $$\hat{i}-\hat{j}, \hat{j}-\hat{k}$$. If $$\theta$$ is the angle between the vector $$\vec{a}$$ and the vector $$\vec{b}=2 \hat{i}-2 \hat{j}+\hat{k}$$ and $$\vec{a} \cdot \vec{b}=6$$, then the ordered pair $$(\theta,|\vec{a} \times \vec{b}|)$$ is equal to :