$$\mathrm{KClO}_{3}+6 \mathrm{FeSO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{KCl}+3 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{H}_{2} \mathrm{O}$$
The above reaction was studied at $$300 \mathrm{~K}$$ by monitoring the concentration of $$\mathrm{FeSO}_{4}$$ in which initial concentration was $$10 \mathrm{M}$$ and after half an hour became 8.8 M. The rate of production of $$\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$$ is _________ $$\times 10^{-6} \mathrm{~mol} \mathrm{~L} \mathrm{~s}^{-1}$$ (Nearest integer)
The number of hyperconjugation structures involved to stabilize carbocation formed in the above reaction is _________.
The ratio x/y on completion of the above reaction is __________.
A mixture of 1 mole of $$\mathrm{H}_{2} \mathrm{O}$$ and 1 mole of $$\mathrm{CO}$$ is taken in a 10 litre container and heated to $$725 \mathrm{~K}$$. At equilibrium $$40 \%$$ of water by mass reacts with carbon monoxide according to the equation :
$$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$$.
The equilibrium constant $$\mathrm{K}_{\mathrm{c}} \times 10^{2}$$ for the reaction is ____________. (Nearest integer)