A metallic cube of side $$15 \mathrm{~cm}$$ moving along $$y$$-axis at a uniform velocity of $$2 \mathrm{~ms}^{-1}$$. In a region of uniform magnetic field of magnitude $$0.5 \mathrm{~T}$$ directed along $$z$$-axis. In equilibrium the potential difference between the faces of higher and lower potential developed because of the motion through the field will be _________ mV.
A nucleus disintegrates into two nuclear parts, in such a way that ratio of their nuclear sizes is $$1: 2^{1 / 3}$$. Their respective speed have a ratio of $$n: 1$$. The value of $n$ is __________.
A block of mass $$5 \mathrm{~kg}$$ starting from rest pulled up on a smooth incline plane making an angle of $$30^{\circ}$$ with horizontal with an affective acceleration of $$1 \mathrm{~ms}^{-2}$$. The power delivered by the pulling force at $$t=10 \mathrm{~s}$$ from the start is ___________ W.
[use $$\mathrm{g}=10 \mathrm{~ms}^{-2}$$ ]
(calculate the nearest integer value)
In the given circuit, $$\mathrm{C}_{1}=2 \mu \mathrm{F}, \mathrm{C}_{2}=0.2 \mu \mathrm{F}, \mathrm{C}_{3}=2 \mu \mathrm{F}, \mathrm{C}_{4}=4 \mu \mathrm{F}, \mathrm{C}_{5}=2 \mu \mathrm{F}, \mathrm{C}_{6}=2 \mu \mathrm{F}$$, The charge stored on capacitor $$\mathrm{C}_{4}$$ is ____________ $$\mu \mathrm{C}$$.