Let $$a, b, c$$ and $$d$$ be positive real numbers such that $$a+b+c+d=11$$. If the maximum value of $$a^{5} b^{3} c^{2} d$$ is $$3750 \beta$$, then the value of $$\beta$$ is
The sum of the coefficients of three consecutive terms in the binomial expansion of $$(1+\mathrm{x})^{\mathrm{n}+2}$$, which are in the ratio $$1: 3: 5$$, is equal to :
If the system of linear equations
$$ \begin{aligned} & 7 x+11 y+\alpha z=13 \\\\ & 5 x+4 y+7 z=\beta \\\\ & 175 x+194 y+57 z=361 \end{aligned} $$
has infinitely many solutions, then $$\alpha+\beta+2$$ is equal to :
For $$a \in \mathbb{C}$$, let $$\mathrm{A}=\{z \in \mathbb{C}: \operatorname{Re}(a+\bar{z}) > \operatorname{Im}(\bar{a}+z)\}$$ and $$\mathrm{B}=\{z \in \mathbb{C}: \operatorname{Re}(a+\bar{z})<\operatorname{Im}(\bar{a}+z)\}$$. Then among the two statements :
(S1): If $$\operatorname{Re}(a), \operatorname{Im}(a) > 0$$, then the set A contains all the real numbers
(S2) : If $$\operatorname{Re}(a), \operatorname{Im}(a) < 0$$, then the set B contains all the real numbers,