Let the mean of 6 observations $$1,2,4,5, \mathrm{x}$$ and $$\mathrm{y}$$ be 5 and their variance be 10 . Then their mean deviation about the mean is equal to :
If $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a continuous function satisfying $$\int_\limits{0}^{\frac{\pi}{2}} f(\sin 2 x) \sin x d x+\alpha \int_\limits{0}^{\frac{\pi}{4}} f(\cos 2 x) \cos x d x=0$$, then the value of $$\alpha$$ is :
Let $$f$$ and $$g$$ be two functions defined by
$$f(x)=\left\{\begin{array}{cc}x+1, & x < 0 \\ |x-1|, & x \geq 0\end{array}\right.$$ and $$\mathrm{g}(x)=\left\{\begin{array}{cc}x+1, & x < 0 \\ 1, & x \geq 0\end{array}\right.$$
Then $$(g \circ f)(x)$$ is :
Let $$y=y(x)$$ be the solution of the differential equation $$\frac{d y}{d x}+\frac{5}{x\left(x^{5}+1\right)} y=\frac{\left(x^{5}+1\right)^{2}}{x^{7}}, x > 0$$. If $$y(1)=2$$, then $$y(2)$$ is equal to :