1
JEE Main 2023 (Online) 11th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let the mean of 6 observations $$1,2,4,5, \mathrm{x}$$ and $$\mathrm{y}$$ be 5 and their variance be 10 . Then their mean deviation about the mean is equal to :

A
$$\frac{10}{3}$$
B
$$\frac{8}{3}$$
C
$$\frac{7}{3}$$
D
3
2
JEE Main 2023 (Online) 11th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a continuous function satisfying $$\int_\limits{0}^{\frac{\pi}{2}} f(\sin 2 x) \sin x d x+\alpha \int_\limits{0}^{\frac{\pi}{4}} f(\cos 2 x) \cos x d x=0$$, then the value of $$\alpha$$ is :

A
$$-\sqrt{3}$$
B
$$\sqrt{2}$$
C
$$-\sqrt{2}$$
D
$$\sqrt{3}$$
3
JEE Main 2023 (Online) 11th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f$$ and $$g$$ be two functions defined by

$$f(x)=\left\{\begin{array}{cc}x+1, & x < 0 \\ |x-1|, & x \geq 0\end{array}\right.$$ and $$\mathrm{g}(x)=\left\{\begin{array}{cc}x+1, & x < 0 \\ 1, & x \geq 0\end{array}\right.$$

Then $$(g \circ f)(x)$$ is :

A
continuous everywhere but not differentiable at $$x=1$$
B
differentiable everywhere
C
not continuous at $$x=-1$$
D
continuous everywhere but not differentiable exactly at one point
4
JEE Main 2023 (Online) 11th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$y=y(x)$$ be the solution of the differential equation $$\frac{d y}{d x}+\frac{5}{x\left(x^{5}+1\right)} y=\frac{\left(x^{5}+1\right)^{2}}{x^{7}}, x > 0$$. If $$y(1)=2$$, then $$y(2)$$ is equal to :

A
$$\frac{693}{128}$$
B
$$\frac{697}{128}$$
C
$$\frac{637}{128}$$
D
$$\frac{679}{128}$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12