Let c, k $$\in$$ R. If $$f(x) = (c + 1){x^2} + (1 - {c^2})x + 2k$$ and $$f(x + y) = f(x) + f(y) - xy$$, for all x, y $$\in$$ R, then the value of $$|2(f(1) + f(2) + f(3) + \,\,......\,\, + \,\,f(20))|$$ is equal to ____________.
Let $$H:{{{x^2}} \over {{a^2}}} - {{{y^2}} \over {{b^2}}} = 1$$, a > 0, b > 0, be a hyperbola such that the sum of lengths of the transverse and the conjugate axes is $$4(2\sqrt 2 + \sqrt {14} )$$. If the eccentricity H is $${{\sqrt {11} } \over 2}$$, then the value of a2 + b2 is equal to __________.
Let b1b2b3b4 be a 4-element permutation with bi $$\in$$ {1, 2, 3, ........, 100} for 1 $$\le$$ i $$\le$$ 4 and bi $$\ne$$ bj for i $$\ne$$ j, such that either b1, b2, b3 are consecutive integers or b2, b3, b4 are consecutive integers. Then the number of such permutations b1b2b3b4 is equal to ____________.
Two balls A and B are placed at the top of 180 m tall tower. Ball A is released from the top at t = 0 s. Ball B is thrown vertically down with an initial velocity 'u' at t = 2 s. After a certain time, both balls meet 100 m above the ground. Find the value of 'u' in ms$$-$$1. [use g = 10 ms$$-$$2] :