The domain of the function $${\cos ^{ - 1}}\left( {{{2{{\sin }^{ - 1}}\left( {{1 \over {4{x^2} - 1}}} \right)} \over \pi }} \right)$$ is :
If the constant term in the expansion of
$${\left( {3{x^3} - 2{x^2} + {5 \over {{x^5}}}} \right)^{10}}$$ is 2k.l, where l is an odd integer, then the value of k is equal to:
$$\int_0^5 {\cos \left( {\pi \left( {x - \left[ {{x \over 2}} \right]} \right)} \right)dx} $$,
where [t] denotes greatest integer less than or equal to t, is equal to:
Let PQ be a focal chord of the parabola y2 = 4x such that it subtends an angle of $${\pi \over 2}$$ at the point (3, 0). Let the line segment PQ be also a focal chord of the ellipse $$E:{{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$, $${a^2} > {b^2}$$. If e is the eccentricity of the ellipse E, then the value of $${1 \over {{e^2}}}$$ is equal to :