A wire of length 22 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into an equilateral triangle. Then, the length of the side of the equilateral triangle, so that the combined area of the square and the equilateral triangle is minimum, is :
The domain of the function $${\cos ^{ - 1}}\left( {{{2{{\sin }^{ - 1}}\left( {{1 \over {4{x^2} - 1}}} \right)} \over \pi }} \right)$$ is :
If the constant term in the expansion of
$${\left( {3{x^3} - 2{x^2} + {5 \over {{x^5}}}} \right)^{10}}$$ is 2k.l, where l is an odd integer, then the value of k is equal to:
$$\int_0^5 {\cos \left( {\pi \left( {x - \left[ {{x \over 2}} \right]} \right)} \right)dx} $$,
where [t] denotes greatest integer less than or equal to t, is equal to: