$$50\tan \left( {3{{\tan }^{ - 1}}\left( {{1 \over 2}} \right) + 2{{\cos }^{ - 1}}\left( {{1 \over {\sqrt 5 }}} \right)} \right) + 4\sqrt 2 \tan \left( {{1 \over 2}{{\tan }^{ - 1}}(2\sqrt 2 )} \right)$$ is equal to ____________.
Let c, k $$\in$$ R. If $$f(x) = (c + 1){x^2} + (1 - {c^2})x + 2k$$ and $$f(x + y) = f(x) + f(y) - xy$$, for all x, y $$\in$$ R, then the value of $$|2(f(1) + f(2) + f(3) + \,\,......\,\, + \,\,f(20))|$$ is equal to ____________.
Let $$H:{{{x^2}} \over {{a^2}}} - {{{y^2}} \over {{b^2}}} = 1$$, a > 0, b > 0, be a hyperbola such that the sum of lengths of the transverse and the conjugate axes is $$4(2\sqrt 2 + \sqrt {14} )$$. If the eccentricity H is $${{\sqrt {11} } \over 2}$$, then the value of a2 + b2 is equal to __________.
Let b1b2b3b4 be a 4-element permutation with bi $$\in$$ {1, 2, 3, ........, 100} for 1 $$\le$$ i $$\le$$ 4 and bi $$\ne$$ bj for i $$\ne$$ j, such that either b1, b2, b3 are consecutive integers or b2, b3, b4 are consecutive integers. Then the number of such permutations b1b2b3b4 is equal to ____________.