Let 3, 6, 9, 12, ....... upto 78 terms and 5, 9, 13, 17, ...... upto 59 terms be two series. Then, the sum of the terms common to both the series is equal to ________.
For real numbers a, b (a > b > 0), let
Area $$\left\{ {(x,y):{x^2} + {y^2} \le {a^2}\,and\,{{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} \ge 1} \right\} = 30\pi $$
and
Area $$\left\{ {(x,y):{x^2} + {y^2} \le {b^2}\,and\,{{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} \le 1} \right\} = 18\pi $$
Then, the value of (a $$-$$ b)2 is equal to ___________.
Let f and g be twice differentiable even functions on ($$-$$2, 2) such that $$f\left( {{1 \over 4}} \right) = 0$$, $$f\left( {{1 \over 2}} \right) = 0$$, $$f(1) = 1$$ and $$g\left( {{3 \over 4}} \right) = 0$$, $$g(1) = 2$$. Then, the minimum number of solutions of $$f(x)g''(x) + f'(x)g'(x) = 0$$ in $$( - 2,2)$$ is equal to ________.
Let the coefficients of x$$-$$1 and x$$-$$3 in the expansion of $${\left( {2{x^{{1 \over 5}}} - {1 \over {{x^{{1 \over 5}}}}}} \right)^{15}},x > 0$$, be m and n respectively. If r is a positive integer such that $$m{n^2} = {}^{15}{C_r}\,.\,{2^r}$$, then the value of r is equal to __________.