1
JEE Main 2022 (Online) 29th June Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$\int\limits_0^2 {\left( {\sqrt {2x} - \sqrt {2x - {x^2}} } \right)dx = \int\limits_0^1 {\left( {1 - \sqrt {1 - {y^2}} - {{{y^2}} \over 2}} \right)dy + \int\limits_1^2 {\left( {2 - {{{y^2}} \over 2}} \right)dy + I} } } $$, then I equals

A
$$\int\limits_0^1 {\left( {1 + \sqrt {1 - {y^2}} } \right)dy} $$
B
$$\int\limits_0^1 {\left( {{{{y^2}} \over 2} - \sqrt {1 - {y^2}} + 1} \right)dy} $$
C
$$\int\limits_0^1 {\left( {1 - \sqrt {1 - {y^2}} } \right)dy} $$
D
$$\int\limits_0^1 {\left( {{{{y^2}} \over 2} + \sqrt {1 - {y^2}} + 1} \right)dy} $$
2
JEE Main 2022 (Online) 29th June Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If y = y(x) is the solution of the differential equation $$\left( {1 + {e^{2x}}} \right){{dy} \over {dx}} + 2\left( {1 + {y^2}} \right){e^x} = 0$$ and y (0) = 0, then $$6\left( {y'(0) + {{\left( {y\left( {{{\log }_e}\sqrt 3 } \right)} \right)}^2}} \right)$$ is equal to

A
2
B
$$-$$2
C
$$-$$4
D
$$-$$1
3
JEE Main 2022 (Online) 29th June Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let a triangle ABC be inscribed in the circle $${x^2} - \sqrt 2 (x + y) + {y^2} = 0$$ such that $$\angle BAC = {\pi \over 2}$$. If the length of side AB is $$\sqrt 2 $$, then the area of the $$\Delta$$ABC is equal to :

A
1
B
$$\left( {\sqrt 6 + \sqrt 3 } \right)/2$$
C
$$\left( {3 + \sqrt 3 } \right)/4$$
D
$$\left( {\sqrt 6 + 2\sqrt 3 } \right)/4$$
4
JEE Main 2022 (Online) 29th June Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The distance of the origin from the centroid of the triangle whose two sides have the equations $$x - 2y + 1 = 0$$ and $$2x - y - 1 = 0$$ and whose orthocenter is $$\left( {{7 \over 3},{7 \over 3}} \right)$$ is :

A
$$\sqrt 2 $$
B
2
C
2$$\sqrt 2 $$
D
4
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12