Let $$\overrightarrow a = \widehat i - 2\widehat j + 3\widehat k$$, $$\overrightarrow b = \widehat i + \widehat j + \widehat k$$ and $$\overrightarrow c $$ be a vector such that $$\overrightarrow a + \left( {\overrightarrow b \times \overrightarrow c } \right) = \overrightarrow 0 $$ and $$\overrightarrow b \,.\,\overrightarrow c = 5$$. Then the value of $$3\left( {\overrightarrow c \,.\,\overrightarrow a } \right)$$ is equal to _________.
Let y = y(x), x > 1, be the solution of the differential equation $$(x - 1){{dy} \over {dx}} + 2xy = {1 \over {x - 1}}$$, with $$y(2) = {{1 + {e^4}} \over {2{e^4}}}$$. If $$y(3) = {{{e^\alpha } + 1} \over {\beta {e^\alpha }}}$$, then the value of $$\alpha + \beta $$ is equal to _________.
Let 3, 6, 9, 12, ....... upto 78 terms and 5, 9, 13, 17, ...... upto 59 terms be two series. Then, the sum of the terms common to both the series is equal to ________.
For real numbers a, b (a > b > 0), let
Area $$\left\{ {(x,y):{x^2} + {y^2} \le {a^2}\,and\,{{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} \ge 1} \right\} = 30\pi $$
and
Area $$\left\{ {(x,y):{x^2} + {y^2} \le {b^2}\,and\,{{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} \le 1} \right\} = 18\pi $$
Then, the value of (a $$-$$ b)2 is equal to ___________.