1
JEE Main 2022 (Online) 29th June Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let A, B, C be three points whose position vectors respectively are

$$\overrightarrow a = \widehat i + 4\widehat j + 3\widehat k$$

$$\overrightarrow b = 2\widehat i + \alpha \widehat j + 4\widehat k,\,\alpha \in R$$

$$\overrightarrow c = 3\widehat i - 2\widehat j + 5\widehat k$$

If $$\alpha$$ is the smallest positive integer for which $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$ are noncollinear, then the length of the median, in $$\Delta$$ABC, through A is :

A
$${{\sqrt {82} } \over 2}$$
B
$${{\sqrt {62} } \over 2}$$
C
$${{\sqrt {69} } \over 2}$$
D
$${{\sqrt {66} } \over 2}$$
2
JEE Main 2022 (Online) 29th June Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The probability that a relation R from {x, y} to {x, y} is both symmetric and transitive, is equal to :

A
$${5 \over {16}}$$
B
$${9 \over {16}}$$
C
$${11 \over {16}}$$
D
$${13 \over {16}}$$
3
JEE Main 2022 (Online) 29th June Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The number of values of a $$\in$$ N such that the variance of 3, 7, 12, a, 43 $$-$$ a is a natural number is :

A
0
B
2
C
5
D
infinite
4
JEE Main 2022 (Online) 29th June Evening Shift
Numerical
+4
-1
Change Language

Let  $$\overrightarrow a = \widehat i - 2\widehat j + 3\widehat k$$,   $$\overrightarrow b = \widehat i + \widehat j + \widehat k$$   and   $$\overrightarrow c $$   be a vector such that   $$\overrightarrow a + \left( {\overrightarrow b \times \overrightarrow c } \right) = \overrightarrow 0 $$   and   $$\overrightarrow b \,.\,\overrightarrow c = 5$$. Then the value of   $$3\left( {\overrightarrow c \,.\,\overrightarrow a } \right)$$   is equal to _________.

Your input ____
JEE Main Papers
2023
2021
EXAM MAP