Match List-I with List-II
List-I | List-II | ||
---|---|---|---|
(A) | Moment of inertia of solid sphere of radius R about any tangent. | (I) | $${5 \over 3}M{R^2}$$ |
(B) | Moment of inertia of hollow sphere of radius (R) about any tangent. | (II) | $${7 \over 5}M{R^2}$$ |
(C) | Moment of inertia of circular ring of radius (R) about its diameter. | (III) | $${1 \over 4}M{R^2}$$ |
(D) | Moment of inertia of circular disc of radius (R) about any diameter. | (IV) | $${1 \over 2}M{R^2}$$ |
Choose the correct answer from the options given below :
Two planets A and B of equal mass are having their period of revolutions TA and TB such that TA = 2TB. These planets are revolving in the circular orbits of radii rA and rB respectively. Which out of the following would be the correct relationship of their orbits?
A water drop of diameter 2 cm is broken into 64 equal droplets. The surface tension of water is 0.075 N/m. In this process the gain in surface energy will be :
Given below are two statements :
Statement I : When $$\mu$$ amount of an ideal gas undergoes adiabatic change from state (P1, V1, T1) to state (P2, V2, T2), then work done is $$W = {{\mu R({T_2} - {T_1})} \over {1 - \gamma }}$$, where $$\gamma = {{{C_p}} \over {{C_v}}}$$ and R = universal gas constant.
Statement II : In the above case, when work is done on the gas, the temperature of the gas would rise.
Choose the correct answer from the options given below :