The number of real solutions of the equation $${e^{4x}} + 4{e^{3x}} - 58{e^{2x}} + 4{e^x} + 1 = 0$$ is ___________.
The mean and standard deviation of 15 observations are found to be 8 and 3 respectively. On rechecking it was found that, in the observations, 20 was misread as 5. Then, the correct variance is equal to _____________.
If $$\overrightarrow a = 2\widehat i + \widehat j + 3\widehat k$$, $$\overrightarrow b = 3\widehat i + 3\widehat j + \widehat k$$ and $$\overrightarrow c = {c_1}\widehat i + {c_2}\widehat j + {c_3}\widehat k$$ are coplanar vectors and $$\overrightarrow a \,.\,\overrightarrow c = 5$$, $$\overrightarrow b \bot \overrightarrow c $$, then $$122({c_1} + {c_2} + {c_3})$$ is equal to ___________.
A ray of light passing through the point P(2, 3) reflects on the x-axis at point A and the reflected ray passes through the point Q(5, 4). Let R be the point that divides the line segment AQ internally into the ratio 2 : 1. Let the co-ordinates of the foot of the perpendicular M from R on the bisector of the angle PAQ be ($$\alpha$$, $$\beta$$). Then, the value of 7$$\alpha$$ + 3$$\beta$$ is equal to ____________.