Let f : R $$\to$$ R be defined as
$$f(x) = \left[ {\matrix{ {[{e^x}],} & {x < 0} \cr {a{e^x} + [x - 1],} & {0 \le x < 1} \cr {b + [\sin (\pi x)],} & {1 \le x < 2} \cr {[{e^{ - x}}] - c,} & {x \ge 2} \cr } } \right.$$
where a, b, c $$\in$$ R and [t] denotes greatest integer less than or equal to t. Then, which of the following statements is true?
The area of the region S = {(x, y) : y2 $$\le$$ 8x, y $$\ge$$ $$\sqrt2$$x, x $$\ge$$ 1} is
Let the solution curve $$y = y(x)$$ of the differential equation
$$\left[ {{x \over {\sqrt {{x^2} - {y^2}} }} + {e^{{y \over x}}}} \right]x{{dy} \over {dx}} = x + \left[ {{x \over {\sqrt {{x^2} - {y^2}} }} + {e^{{y \over x}}}} \right]y$$
pass through the points (1, 0) and (2$$\alpha$$, $$\alpha$$), $$\alpha$$ > 0. Then $$\alpha$$ is equal to
Let y = y(x) be the solution of the differential equation $$x(1 - {x^2}){{dy} \over {dx}} + (3{x^2}y - y - 4{x^3}) = 0$$, $$x > 1$$, with $$y(2) = - 2$$. Then y(3) is equal to :