1
JEE Main 2022 (Online) 28th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The area of the region S = {(x, y) : y2 $$\le$$ 8x, y $$\ge$$ $$\sqrt2$$x, x $$\ge$$ 1} is

A
$${{13\sqrt 2 } \over 6}$$
B
$${{11\sqrt 2 } \over 6}$$
C
$${{5\sqrt 2 } \over 6}$$
D
$${{19\sqrt 2 } \over 6}$$
2
JEE Main 2022 (Online) 28th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let the solution curve $$y = y(x)$$ of the differential equation

$$\left[ {{x \over {\sqrt {{x^2} - {y^2}} }} + {e^{{y \over x}}}} \right]x{{dy} \over {dx}} = x + \left[ {{x \over {\sqrt {{x^2} - {y^2}} }} + {e^{{y \over x}}}} \right]y$$

pass through the points (1, 0) and (2$$\alpha$$, $$\alpha$$), $$\alpha$$ > 0. Then $$\alpha$$ is equal to

A
$${1 \over 2}\exp \left( {{\pi \over 6} + \sqrt e - 1} \right)$$
B
$${1 \over 2}\exp \left( {{\pi \over 6} + e - 1} \right)$$
C
$$\exp \left( {{\pi \over 6} + \sqrt e + 1} \right)$$
D
$$2\exp \left( {{\pi \over 3} + \sqrt e - 1} \right)$$
3
JEE Main 2022 (Online) 28th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let y = y(x) be the solution of the differential equation $$x(1 - {x^2}){{dy} \over {dx}} + (3{x^2}y - y - 4{x^3}) = 0$$, $$x > 1$$, with $$y(2) = - 2$$. Then y(3) is equal to :

A
$$-$$18
B
$$-$$12
C
$$-$$6
D
$$-$$3
4
JEE Main 2022 (Online) 28th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The number of real solutions of

$${x^7} + 5{x^3} + 3x + 1 = 0$$ is equal to ____________.

A
0
B
1
C
3
D
5
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12