1
JEE Main 2019 (Online) 12th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let Z be the set of integers.
If A = {x $$ \in $$ Z : 2(x + 2) (x2 $$-$$ 5x + 6) = 1} and
B = {x $$ \in $$ Z : $$-$$ 3 < 2x $$-$$ 1 < 9},
then the number of subsets of the set A $$ \times $$ B, is
A
212
B
218
C
210
D
215
2
JEE Main 2019 (Online) 12th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If the function f given by f(x) = x3 – 3(a – 2)x2 + 3ax + 7, for some a$$ \in $$R is increasing in (0, 1] and decreasing in [1, 5), then a root of the equation, $${{f\left( x \right) - 14} \over {{{\left( {x - 1} \right)}^2}}} = 0\left( {x \ne 1} \right)$$ is :
A
$$-$$ 7
B
5
C
7
D
6
3
JEE Main 2019 (Online) 12th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The integral $$\int {{{3{x^{13}} + 2{x^{11}}} \over {{{\left( {2{x^4} + 3{x^2} + 1} \right)}^4}}}} \,dx$$ is equal to : (where C is a constant of integration)
A
$${{{x^{12}}} \over {6{{\left( {2{x^4} + 3{x^2} + 1} \right)}^3}}}$$ + $$C$$
B
$${{{x^4}} \over {6{{\left( {2{x^4} + 3{x^2} + 1} \right)}^3}}} + C$$
C
$${{{x^{12}}} \over {{{\left( {2{x^4} + 3{x^2} + 1} \right)}^3}}} + C$$
D
$${{{x^4}} \over {{{\left( {2{x^4} + 3{x^2} + 1} \right)}^3}}} + C$$
4
JEE Main 2019 (Online) 12th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let S and S' be the foci of an ellipse and B be any one of the extremities of its minor axis. If $$\Delta $$S'BS is a right angled triangle with right angle at B and area ($$\Delta $$S'BS) = 8 sq. units, then the length of a latus rectum of the ellipse is :
A
2
B
4$$\sqrt 2 $$
C
4
D
2$$\sqrt 2 $$
JEE Main Papers
2023
2021
EXAM MAP