1
JEE Main 2019 (Online) 11th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The area (in sq. units) in the first quadrant bounded by the parabola, y = x2 + 1, the tangent to it at the point (2, 5) and the coordinate axes is :
A
$${8 \over 3}$$
B
$${{14} \over 3}$$
C
$${{187} \over {24}}$$
D
$${{37} \over {24}}$$
2
JEE Main 2019 (Online) 11th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
$$\mathop {\lim }\limits_{x \to 0} {{x\cot \left( {4x} \right)} \over {{{\sin }^2}x{{\cot }^2}\left( {2x} \right)}}$$ is equal to :
A
0
B
4
C
1
D
2
3
JEE Main 2019 (Online) 11th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If  $$\left| {\matrix{ {a - b - c} & {2a} & {2a} \cr {2b} & {b - c - a} & {2b} \cr {2c} & {2c} & {c - a - b} \cr } } \right|$$

      = (a + b + c) (x + a + b + c)2, x $$ \ne $$ 0,

then x is equal to :
A
–2(a + b + c)
B
2(a + b + c)
C
abc
D
–(a + b + c)
4
JEE Main 2019 (Online) 11th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$\alpha $$ and $$\beta $$ be the roots of the quadratic equation x2 sin $$\theta $$ – x(sin $$\theta $$ cos $$\theta $$ + 1) + cos $$\theta $$ = 0 (0 < $$\theta $$ < 45o), and $$\alpha $$ < $$\beta $$. Then $$\sum\limits_{n = 0}^\infty {\left( {{\alpha ^n} + {{{{\left( { - 1} \right)}^n}} \over {{\beta ^n}}}} \right)} $$ is equal to :
A
$${1 \over {1 + \cos \theta }} + {1 \over {1 - \sin \theta }}$$
B
$${1 \over {1 - \cos \theta }} + {1 \over {1 + \sin \theta }}$$
C
$${1 \over {1 - \cos \theta }} - {1 \over {1 + \sin \theta }}$$
D
$${1 \over {1 + \cos \theta }} - {1 \over {1 - \sin \theta }}$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12