1
JEE Main 2016 (Online) 9th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If   f(x) is a differentiable function in the interval (0, $$\infty $$) such that f (1) = 1 and

$$\mathop {\lim }\limits_{t \to x} $$   $${{{t^2}f\left( x \right) - {x^2}f\left( t \right)} \over {t - x}} = 1,$$ for each x > 0, then $$f\left( {{\raise0.5ex\hbox{$\scriptstyle 3$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}} \right)$$ equal to :
A
$${{13} \over 6}$$
B
$${{23} \over 18}$$
C
$${{25} \over 9}$$
D
$${{31} \over 18}$$
2
JEE Main 2016 (Online) 9th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If   $$2\int\limits_0^1 {{{\tan }^{ - 1}}xdx = \int\limits_0^1 {{{\cot }^{ - 1}}} } \left( {1 - x + {x^2}} \right)dx,$$

then $$\int\limits_0^1 {{{\tan }^{ - 1}}} \left( {1 - x + {x^2}} \right)dx$$ is equalto :
A
log4
B
$${\pi \over 2}$$ + log2
C
log2
D
$${\pi \over 2}$$ $$-$$ log4
3
JEE Main 2016 (Online) 9th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If   $$\int {{{dx} \over {{{\cos }^3}x\sqrt {2\sin 2x} }}} = {\left( {\tan x} \right)^A} + C{\left( {\tan x} \right)^B} + k,$$

where k is a constant of integration, then A + B +C equals :
A
$${{21} \over 5}$$
B
$${{16} \over 5}$$
C
$${{7} \over 10}$$
D
$${{27} \over 10}$$
4
JEE Main 2016 (Online) 9th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The minimum distance of a point on the curve y = x2−4 from the origin is :
A
$${{\sqrt {19} } \over 2}$$
B
$$\sqrt {{{15} \over 2}} $$
C
$${{\sqrt {15} } \over 2}$$
D
$$\sqrt {{{19} \over 2}} $$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12