The plot of $$\mathrm{pH}$$-metric titration of weak base $$\mathrm{NH}_{4} \mathrm{OH}$$ vs strong acid HCl looks like :
Class XII students were asked to prepare one litre of buffer solution of $$\mathrm{pH} \,8.26$$ by their Chemistry teacher: The amount of ammonium chloride to be dissolved by the student in $$0.2\, \mathrm{M}$$ ammonia solution to make one litre of the buffer is :
(Given: $$\mathrm{pK}_{\mathrm{b}}\left(\mathrm{NH}_{3}\right)=4.74$$
Molar mass of $$\mathrm{NH}_{3}=17 \mathrm{~g} \mathrm{~mol}^{-1}$$
Molar mass of $$\mathrm{NH}_{4} \mathrm{Cl}=53.5 \mathrm{~g} \mathrm{~mol}^{-1}$$ )
$${K_{{a_1}}}$$, $${K_{{a_2}}}$$ and $${K_{{a_3}}}$$ are the respective ionization constants for the following reactions (a), (b) and (c).
(a) $${H_2}{C_2}{O_4} \mathbin{\lower.3ex\hbox{$\buildrel\textstyle\rightarrow\over {\smash{\leftarrow}\vphantom{_{\vbox to.5ex{\vss}}}}$}} {H^ + } + H{C_2}O_4^ - $$
(b) $$H{C_2}O_4^ - \mathbin{\lower.3ex\hbox{$\buildrel\textstyle\rightarrow\over {\smash{\leftarrow}\vphantom{_{\vbox to.5ex{\vss}}}}$}} {H^ + } + {C_2}O_4^{2 - }$$
(c) $${H_2}{C_2}O_4^{} \mathbin{\lower.3ex\hbox{$\buildrel\textstyle\rightarrow\over {\smash{\leftarrow}\vphantom{_{\vbox to.5ex{\vss}}}}$}} 2{H^ + } + {C_2}O_4^{2 - }$$
The relationship between $${K_{{a_1}}}$$, $${K_{{a_2}}}$$ and $${K_{{a_3}}}$$ is given as :
$$20 \mathrm{~mL}$$ of $$0.1\, \mathrm{M} \,\mathrm{NH}_{4} \mathrm{OH}$$ is mixed with $$40 \mathrm{~mL}$$ of $$0.05 \mathrm{M} \mathrm{HCl}$$. The $$\mathrm{pH}$$ of the mixture is nearest to :
(Given : $$\mathrm{K}_{\mathrm{b}}\left(\mathrm{NH}_{4} \mathrm{OH}\right)=1 \times 10^{-5}, \log 2=0.30, \log 3=0.48, \log 5=0.69, \log 7=0.84, \log 11= 1.04)$$