Assuming $$1 \,\mu \mathrm{g}$$ of trace radioactive element X with a half life of 30 years is absorbed by a growing tree. The amount of X remaining in the tree after 100 years is ______ $$\times\, 10^{-1} \mu \mathrm{g}$$.
[Given : ln 10 = 2.303; log 2 = 0.30]
The reaction between X and Y is first order with respect to X and zero order with respect to Y.
Experiment | $${{[X]} \over {mol\,{L^{ - 1}}}}$$ | $${{[Y]} \over {mol\,{L^{ - 1}}}}$$ | $${{Initial\,rate} \over {mol\,{L^{ - 1}}\,{{\min }^{ - 1}}}}$$ |
---|---|---|---|
I | 0.1 | 0.1 | $$2 \times {10^{ - 3}}$$ |
I | L | 0.2 | $$4 \times {10^{ - 3}}$$ |
III | 0.4 | 0.4 | $$M \times {10^{ - 3}}$$ |
IV | 0.1 | 0.2 | $$2 \times {10^{ - 3}}$$ |
Examine the data of table and calculate ratio of numerical values of M and L. (Nearest Integer)
For a reaction, given below is the graph of $$\ln k$$ vs $${1 \over T}$$. The activation energy for the reaction is equal to ____________ $$\mathrm{cal} \,\mathrm{mol}^{-1}$$. (nearest integer)
(Given : $$\mathrm{R}=2 \,\mathrm{cal} \,\mathrm{K}^{-1} \,\mathrm{~mol}^{-1}$$ )
For the given first order reaction
$$\mathrm{A} \rightarrow \mathrm{B}$$
the half life of the reaction is $$0.3010 \mathrm{~min}$$. The ratio of the initial concentration of reactant to the concentration of reactant at time $$2.0 \mathrm{~min}$$ will be equal to ___________. (Nearest integer)