1
JEE Main 2025 (Online) 3rd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
The shortest distance between the curves $y^2=8 x$ and $x^2+y^2+12 y+35=0$ is:
A
$2 \sqrt{3}-1$
B
$2 \sqrt{2}-1$
C
$3 \sqrt{2}-1$
D
$\sqrt{2}$
2
JEE Main 2025 (Online) 3rd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Consider the lines $x(3 \lambda+1)+y(7 \lambda+2)=17 \lambda+5, \lambda$ being a parameter, all passing through a point P. One of these lines (say $L$ ) is farthest from the origin. If the distance of $L$ from the point $(3,6)$ is $d$, then the value of $d^2$ is
A
10
B
20
C
15
D
30
3
JEE Main 2025 (Online) 3rd April Evening Shift
MCQ (Single Correct Answer)
+4
-1

Let $y=y(x)$ be the solution of the differential equation

$\frac{d y}{d x}+3\left(\tan ^2 x\right) y+3 y=\sec ^2 x, y(0)=\frac{1}{3}+e^3$. Then $y\left(\frac{\pi}{4}\right)$ is equal to :

A
$\frac{4}{3}$
B
$\frac{2}{3}+e^3$
C
$\frac{4}{3}+e^3$
D
$\frac{2}{3}$
4
JEE Main 2025 (Online) 3rd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Let $f$ be a function such that $f(x)+3 f\left(\frac{24}{x}\right)=4 x, x \neq 0$. Then $f(3)+f(8)$ is equal to
A
13
B
11
C
10
D
12
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12