1
JEE Main 2025 (Online) 3rd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The distance of the point $(7,10,11)$ from the line $\frac{x-4}{1}=\frac{y-4}{0}=\frac{z-2}{3}$ along the line $\frac{x-9}{2}=\frac{y-13}{3}=\frac{z-17}{6}$ is
A
16
B
12
C
18
D
14
2
JEE Main 2025 (Online) 3rd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the probability that the random variable $X$ takes the value $x$ is given by

$P(X=x)=k(x+1) 3^{-x}, x=0,1,2,3 \ldots$, where $k$ is a constant, then $P(X \geq 3)$ is equal to

A
$\frac{1}{9}$
B
$\frac{8}{27}$
C
$\frac{7}{27}$
D
$\frac{4}{9}$
3
JEE Main 2025 (Online) 3rd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The number of solutions of the equation

$(4-\sqrt{3}) \sin x-2 \sqrt{3} \cos ^2 x=-\frac{4}{1+\sqrt{3}}, x \in\left[-2 \pi, \frac{5 \pi}{2}\right]$ is

A
4
B
3
C
6
D
5
4
JEE Main 2025 (Online) 3rd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the domain of the function $f(x)=\log _7\left(1-\log _4\left(x^2-9 x+18\right)\right)$ is $(\alpha, \beta) \cup(\gamma, o)$, then $\alpha+\beta+\gamma+\hat{o}$ is equal to

A
17
B
15
C
16
D
18
JEE Main Papers
2023
2021
EXAM MAP