Let $x=x(y)$ be the solution of the differential equation $y^2 \mathrm{~d} x+\left(x-\frac{1}{y}\right) \mathrm{d} y=0$. If $x(1)=1$, then $x\left(\frac{1}{2}\right)$ is :
A coin is tossed three times. Let $X$ denote the number of times a tail follows a head. If $\mu$ and $\sigma^2$ denote the mean and variance of $X$, then the value of $64\left(\mu+\sigma^2\right)$ is:
Let $f(x)$ be a real differentiable function such that $f(0)=1$ and $f(x+y)=f(x) f^{\prime}(y)+f^{\prime}(x) f(y)$ for all $x, y \in \mathbf{R}$. Then $\sum_\limits{n=1}^{100} \log _e f(n)$ is equal to :
Two balls are selected at random one by one without replacement from a bag containing 4 white and 6 black balls. If the probability that the first selected ball is black, given that the second selected ball is also black, is $\frac{m}{n}$, where $\operatorname{gcd}(m, n)=1$, then $m+n$ is equal to :