1
JEE Main 2025 (Online) 22nd January Morning Shift
Fill in the Blanks
+4
-1

$\mathrm{A \rightarrow B}$

The molecule A changes into its isomeric form B by following a first order kinetics at a temperature of 1000 K . If the energy barrier with respect to reactant energy for such isomeric transformation is $191.48 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and the frequency factor is $10^{20}$, the time required for $50 \%$ molecules of A to become B is __________ picoseconds (nearest integer). $\left[\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right]$

2
JEE Main 2025 (Online) 22nd January Morning Shift
MCQ (Single Correct Answer)
+4
-1

The area of the region, inside the circle $(x-2 \sqrt{3})^2+y^2=12$ and outside the parabola $y^2=2 \sqrt{3} x$ is :

A
$3 \pi-8$
B
 $6 \pi-8$
C
$3 \pi+8$
D
$6 \pi-16$
3
JEE Main 2025 (Online) 22nd January Morning Shift
MCQ (Single Correct Answer)
+4
-1

Let the foci of a hyperbola be $(1,14)$ and $(1,-12)$. If it passes through the point $(1,6)$, then the length of its latus-rectum is :

A
$\frac{25}{6}$
B
$\frac{144}{5}$
C
$\frac{288}{5}$
D
$\frac{24}{5}$
4
JEE Main 2025 (Online) 22nd January Morning Shift
MCQ (Single Correct Answer)
+4
-1

Let $z_1, z_2$ and $z_3$ be three complex numbers on the circle $|z|=1$ with $\arg \left(z_1\right)=\frac{-\pi}{4}, \arg \left(z_2\right)=0$ and $\arg \left(z_3\right)=\frac{\pi}{4}$. If $\left|z_1 \bar{z}_2+z_2 \bar{z}_3+z_3 \bar{z}_1\right|^2=\alpha+\beta \sqrt{2}, \alpha, \beta \in Z$, then the value of $\alpha^2+\beta^2$ is :

A
41
B
29
C
24
D
31
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12