On a thin layer chromatographic plate, an organic compound moved by $$3.5 \mathrm{~cm}$$, while the solvent moved by $$5 \mathrm{~cm}$$. The retardation factor of the organic compound is ________ $$\times 10^{-1}$$.
If IUPAC name of an element is "Unununnium" then the element belongs to nth group of Periodic table. The value of n is ________.
Let $$g: \mathbf{R} \rightarrow \mathbf{R}$$ be a non constant twice differentiable function such that $$\mathrm{g}^{\prime}\left(\frac{1}{2}\right)=\mathrm{g}^{\prime}\left(\frac{3}{2}\right)$$. If a real valued function $$f$$ is defined as $$f(x)=\frac{1}{2}[g(x)+g(2-x)]$$, then
The value of $$\lim _\limits{n \rightarrow \infty} \sum_\limits{k=1}^n \frac{n^3}{\left(n^2+k^2\right)\left(n^2+3 k^2\right)}$$ is :