$$\text { Number of integral terms in the expansion of }\left\{7^{\left(\frac{1}{2}\right)}+11^{\left(\frac{1}{6}\right)}\right\}^{824} \text { is equal to _________. }$$
Let the latus rectum of the hyperbola $$\frac{x^2}{9}-\frac{y^2}{b^2}=1$$ subtend an angle of $$\frac{\pi}{3}$$ at the centre of the hyperbola. If $$\mathrm{b}^2$$ is equal to $$\frac{l}{\mathrm{~m}}(1+\sqrt{\mathrm{n}})$$, where $$l$$ and $$\mathrm{m}$$ are co-prime numbers, then $$\mathrm{l}^2+\mathrm{m}^2+\mathrm{n}^2$$ is equal to ________.
If $$\mathrm{d}_1$$ is the shortest distance between the lines $$x+1=2 y=-12 z, x=y+2=6 z-6$$ and $$\mathrm{d}_2$$ is the shortest distance between the lines $$\frac{x-1}{2}=\frac{y+8}{-7}=\frac{z-4}{5}, \frac{x-1}{2}=\frac{y-2}{1}=\frac{z-6}{-3}$$, then the value of $$\frac{32 \sqrt{3} \mathrm{~d}_1}{\mathrm{~d}_2}$$ is :
Let $$\alpha=1^2+4^2+8^2+13^2+19^2+26^2+\ldots$$ upto 10 terms and $$\beta=\sum_\limits{n=1}^{10} n^4$$. If $$4 \alpha-\beta=55 k+40$$, then $$\mathrm{k}$$ is equal to __________.