The value of $$9 \int_\limits0^9\left[\sqrt{\frac{10 x}{x+1}}\right] \mathrm{d} x$$, where $$[t]$$ denotes the greatest integer less than or equal to $$t$$, is
Let $$\alpha, \beta \in \mathbf{N}$$ be roots of the equation $$x^2-70 x+\lambda=0$$, where $$\frac{\lambda}{2}, \frac{\lambda}{3} \notin \mathbf{N}$$. If $$\lambda$$ assumes the minimum possible value, then $$\frac{(\sqrt{\alpha-1}+\sqrt{\beta-1})(\lambda+35)}{|\alpha-\beta|}$$ is equal to :
$$\text { Number of integral terms in the expansion of }\left\{7^{\left(\frac{1}{2}\right)}+11^{\left(\frac{1}{6}\right)}\right\}^{824} \text { is equal to _________. }$$
Let the latus rectum of the hyperbola $$\frac{x^2}{9}-\frac{y^2}{b^2}=1$$ subtend an angle of $$\frac{\pi}{3}$$ at the centre of the hyperbola. If $$\mathrm{b}^2$$ is equal to $$\frac{l}{\mathrm{~m}}(1+\sqrt{\mathrm{n}})$$, where $$l$$ and $$\mathrm{m}$$ are co-prime numbers, then $$\mathrm{l}^2+\mathrm{m}^2+\mathrm{n}^2$$ is equal to ________.