1
JEE Main 2024 (Online) 30th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$g: \mathbf{R} \rightarrow \mathbf{R}$$ be a non constant twice differentiable function such that $$\mathrm{g}^{\prime}\left(\frac{1}{2}\right)=\mathrm{g}^{\prime}\left(\frac{3}{2}\right)$$. If a real valued function $$f$$ is defined as $$f(x)=\frac{1}{2}[g(x)+g(2-x)]$$, then

A
$$f^{\prime \prime}(x)=0$$ for atleast two $$x$$ in $$(0,2)$$
B
$$f^{\prime}\left(\frac{3}{2}\right)+f^{\prime}\left(\frac{1}{2}\right)=1$$
C
$$f^{\prime \prime}(x)=0$$ for no $$x$$ in $$(0,1)$$
D
$$f^{\prime \prime}(x)=0$$ for exactly one $$x$$ in $$(0,1)$$
2
JEE Main 2024 (Online) 30th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The value of $$\lim _\limits{n \rightarrow \infty} \sum_\limits{k=1}^n \frac{n^3}{\left(n^2+k^2\right)\left(n^2+3 k^2\right)}$$ is :

A
$$\frac{\pi}{8(2 \sqrt{3}+3)}$$
B
$$\frac{(2 \sqrt{3}+3) \pi}{24}$$
C
$$\frac{13 \pi}{8(4 \sqrt{3}+3)}$$
D
$$\frac{13(2 \sqrt{3}-3) \pi}{8}$$
3
JEE Main 2024 (Online) 30th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the circles $$(x+1)^2+(y+2)^2=r^2$$ and $$x^2+y^2-4 x-4 y+4=0$$ intersect at exactly two distinct points, then

A
$$\frac{1}{2}<\mathrm{r}<7$$
B
$$3<\mathrm{r}<7$$
C
$$5<\mathrm{r}<9$$
D
$$0<\mathrm{r}<7$$
4
JEE Main 2024 (Online) 30th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\overrightarrow{\mathrm{a}}=\mathrm{a}_1 \hat{i}+\mathrm{a}_2 \hat{j}+\mathrm{a}_3 \hat{k}$$ and $$\overrightarrow{\mathrm{b}}=\mathrm{b}_1 \hat{i}+\mathrm{b}_2 \hat{j}+\mathrm{b}_3 \hat{k}$$ be two vectors such that $$|\overrightarrow{\mathrm{a}}|=1, \vec{a} \cdot \vec{b}=2$$ and $$|\vec{b}|=4$$. If $$\vec{c}=2(\vec{a} \times \vec{b})-3 \vec{b}$$, then the angle between $$\vec{b}$$ and $$\vec{c}$$ is equal to:

A
$$\cos ^{-1}\left(-\frac{1}{\sqrt{3}}\right)$$
B
$$\cos ^{-1}\left(\frac{2}{3}\right)$$
C
$$\cos ^{-1}\left(\frac{2}{\sqrt{3}}\right)$$
D
$$\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12