Let the area enclosed by the lines $$x+y=2, \mathrm{y}=0, x=0$$ and the curve $$f(x)=\min \left\{x^{2}+\frac{3}{4}, 1+[x]\right\}$$ where $$[x]$$ denotes the greatest integer $$\leq x$$, be $$\mathrm{A}$$. Then the value of $$12 \mathrm{~A}$$ is _____________.
Let m and $$\mathrm{n}$$ be the numbers of real roots of the quadratic equations $$x^{2}-12 x+[x]+31=0$$ and $$x^{2}-5|x+2|-4=0$$ respectively, where $$[x]$$ denotes the greatest integer $$\leq x$$. Then $$\mathrm{m}^{2}+\mathrm{mn}+\mathrm{n}^{2}$$ is equal to __________.
Let $$\mathrm{R}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$$ and $$\mathrm{S}=\{1,2,3,4\}$$. Total number of onto functions $$f: \mathrm{R} \rightarrow \mathrm{S}$$ such that $$f(\mathrm{a}) \neq 1$$, is equal to ______________.
Let $$\mathrm{k}$$ and $$\mathrm{m}$$ be positive real numbers such that the function $$f(x)=\left\{\begin{array}{cc}3 x^{2}+k \sqrt{x+1}, & 0 < x < 1 \\ m x^{2}+k^{2}, & x \geq 1\end{array}\right.$$ is differentiable for all $$x > 0$$. Then $$\frac{8 f^{\prime}(8)}{f^{\prime}\left(\frac{1}{8}\right)}$$ is equal to ____________.