If $$\alpha > \beta > 0$$ are the roots of the equation $$a x^{2}+b x+1=0$$, and $$\lim_\limits{x \rightarrow \frac{1}{\alpha}}\left(\frac{1-\cos \left(x^{2}+b x+a\right)}{2(1-\alpha x)^{2}}\right)^{\frac{1}{2}}=\frac{1}{k}\left(\frac{1}{\beta}-\frac{1}{\alpha}\right), \text { then } \mathrm{k} \text { is equal to }$$ :
The value of $$36\left(4 \cos ^{2} 9^{\circ}-1\right)\left(4 \cos ^{2} 27^{\circ}-1\right)\left(4 \cos ^{2} 81^{\circ}-1\right)\left(4 \cos ^{2} 243^{\circ}-1\right)$$ is :
Let S be the set of all values of $$\theta \in[-\pi, \pi]$$ for which the system of linear equations
$$x+y+\sqrt{3} z=0$$
$$-x+(\tan \theta) y+\sqrt{7} z=0$$
$$x+y+(\tan \theta) z=0$$
has non-trivial solution. Then $$\frac{120}{\pi} \sum_\limits{\theta \in \mathrm{s}} \theta$$ is equal to :
Let $$[t]$$ denote the greatest integer function. If $$\int_\limits{0}^{2.4}\left[x^{2}\right] d x=\alpha+\beta \sqrt{2}+\gamma \sqrt{3}+\delta \sqrt{5}$$, then $$\alpha+\beta+\gamma+\delta$$ is equal to __________.