The speed of a swimmer is $$4 \mathrm{~km} \mathrm{~h}^{-1}$$ in still water. If the swimmer makes his strokes normal to the flow of river of width $$1 \mathrm{~km}$$, he reaches a point $$750 \mathrm{~m}$$ down the stream on the opposite bank.
The speed of the river water is ___________ $$\mathrm{km} ~\mathrm{h}^{-1}$$
A solid sphere of mass $$1 \mathrm{~kg}$$ rolls without slipping on a plane surface. Its kinetic energy is $$7 \times 10^{-3} \mathrm{~J}$$. The speed of the centre of mass of the sphere is __________ $$\operatorname{cm~s}^{-1}$$
Expression for an electric field is given by $$\overrightarrow{\mathrm{E}}=4000 x^{2} \hat{i} \frac{\mathrm{V}}{\mathrm{m}}$$. The electric flux through the cube of side $$20 \mathrm{~cm}$$ when placed in electric field (as shown in the figure) is __________ $$\mathrm{V} \mathrm{~cm}$$.
A thin rod having a length of $$1 \mathrm{~m}$$ and area of cross-section $$3 \times 10^{-6} \mathrm{~m}^{2}$$ is suspended vertically from one end. The rod is cooled from $$210^{\circ} \mathrm{C}$$ to $$160^{\circ} \mathrm{C}$$. After cooling, a mass $$\mathrm{M}$$ is attached at the lower end of the rod such that the length of rod again becomes $$1 \mathrm{~m}$$. Young's modulus and coefficient of linear expansion of the rod are $$2 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}$$ and $$2 \times 10^{-5} \mathrm{~K}^{-1}$$, respectively. The value of $$\mathrm{M}$$ is __________ $$\mathrm{kg}$$.
(Take $$\mathrm{g=10~m~s^{-2}}$$)