The drift velocity of electrons for a conductor connected in an electrical circuit is $$\mathrm{V}_{\mathrm{d}}$$. The conductor in now replaced by another conductor with same material and same length but double the area of cross section. The applied voltage remains same. The new drift velocity of electrons will be
A rod with circular cross-section area $$2 \mathrm{~cm}^{2}$$ and length $$40 \mathrm{~cm}$$ is wound uniformly with 400 turns of an insulated wire. If a current of $$0.4 \mathrm{~A}$$ flows in the wire windings, the total magnetic flux produced inside windings is $$4 \pi \times 10^{-6} \mathrm{~Wb}$$. The relative permeability of the rod is
(Given : Permeability of vacuum $$\mu_{0}=4 \pi \times 10^{-7} \mathrm{NA}^{-2}$$)
At a certain depth "d " below surface of earth, value of acceleration due to gravity becomes four times that of its value at a height $$\mathrm{3 R}$$ above earth surface. Where $$\mathrm{R}$$ is Radius of earth (Take $$\mathrm{R}=6400 \mathrm{~km}$$ ). The depth $$\mathrm{d}$$ is equal to
Two polaroide $$\mathrm{A}$$ and $$\mathrm{B}$$ are placed in such a way that the pass-axis of polaroids are perpendicular to each other. Now, another polaroid $$\mathrm{C}$$ is placed between $$\mathrm{A}$$ and $$\mathrm{B}$$ bisecting angle between them. If intensity of unpolarized light is $$\mathrm{I}_{0}$$ then intensity of transmitted light after passing through polaroid $$\mathrm{B}$$ will be: