1
JEE Main 2023 (Online) 31st January Evening Shift
Numerical
+4
-1
Change Language
Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors such that

$|\vec{a}|=\sqrt{31}, 4|\vec{b}|=|\vec{c}|=2$ and $2(\vec{a} \times \vec{b})=3(\vec{c} \times \vec{a})$.

If the angle between $\vec{b}$ and $\vec{c}$ is $\frac{2 \pi}{3}$, then $\left(\frac{\vec{a} \times \vec{c}}{\vec{a} \cdot \vec{b}}\right)^{2}$ is equal to __________.
Your input ____
2
JEE Main 2023 (Online) 31st January Evening Shift
Numerical
+4
-1
Change Language
Let A be the event that the absolute difference between two randomly choosen real numbers in the sample space $[0,60]$ is less than or equal to a . If $\mathrm{P}(\mathrm{A})=\frac{11}{36}$, then $\mathrm{a}$ is equal to _______.
Your input ____
3
JEE Main 2023 (Online) 31st January Evening Shift
Numerical
+4
-1
Change Language
If the constant term in the binomial expansion of $\left(\frac{x^{\frac{5}{2}}}{2}-\frac{4}{x^{l}}\right)^{9}$ is $-84$ and the coefficient of $x^{-3 l}$ is $2^{\alpha} \beta$, where $\beta<0$ is an odd number, then $|\alpha l-\beta|$ is equal to ________.
Your input ____
4
JEE Main 2023 (Online) 31st January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
For a solid rod, the Young's modulus of elasticity is $3.2 \times 10^{11} \mathrm{Nm}^{-2}$ and density is $8 \times 10^3 \mathrm{~kg} \mathrm{~m}^{-3}$. The velocity of longitudinal wave in the rod will be.
A
$3.65 \times 10^3 \mathrm{~ms}^{-1}$
B
$6.32 \times 10^3 \mathrm{~ms}^{-1}$
C
$18.96 \times 10^3 \mathrm{~ms}^{-1}$
D
$145.75 \times 10^3 \mathrm{~ms}^{-1}$
JEE Main Papers
2023
2021
EXAM MAP