1
JEE Main 2023 (Online) 31st January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Among the relations

$\mathrm{S}=\left\{(\mathrm{a}, \mathrm{b}): \mathrm{a}, \mathrm{b} \in \mathbb{R}-\{0\}, 2+\frac{\mathrm{a}}{\mathrm{b}}>0\right\}$

and $\mathrm{T}=\left\{(\mathrm{a}, \mathrm{b}): \mathrm{a}, \mathrm{b} \in \mathbb{R}, \mathrm{a}^{2}-\mathrm{b}^{2} \in \mathbb{Z}\right\}$,
A
$\mathrm{S}$ is transitive but $\mathrm{T}$ is not
B
both $\mathrm{S}$ and $\mathrm{T}$ are symmetric
C
neither $S$ nor $T$ is transitive
D
$T$ is symmetric but $S$ is not
2
JEE Main 2023 (Online) 31st January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The absolute minimum value, of the function

$f(x)=\left|x^{2}-x+1\right|+\left[x^{2}-x+1\right]$,

where $[t]$ denotes the greatest integer function, in the interval $[-1,2]$, is :
A
$\frac{3}{4}$
B
$\frac{3}{2}$
C
$\frac{1}{4}$
D
$\frac{5}{4}$
3
JEE Main 2023 (Online) 31st January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If $\phi(x)=\frac{1}{\sqrt{x}} \int\limits_{\frac{\pi}{4}}^x\left(4 \sqrt{2} \sin t-3 \phi^{\prime}(t)\right) d t, x>0$,

then $\emptyset^{\prime}\left(\frac{\pi}{4}\right)$ is equal to :
A
$\frac{4}{6+\sqrt{\pi}}$
B
$\frac{4}{6-\sqrt{\pi}}$
C
$\frac{8}{\sqrt{\pi}}$
D
$\frac{8}{6+\sqrt{\pi}}$
4
JEE Main 2023 (Online) 31st January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $\mathrm{H}$ be the hyperbola, whose foci are $(1 \pm \sqrt{2}, 0)$ and eccentricity is $\sqrt{2}$. Then the length of its latus rectum is :
A
$\frac{5}{2}$
B
3
C
2
D
$\frac{3}{2}$
JEE Main Papers
2023
2021
EXAM MAP