1
JEE Main 2023 (Online) 31st January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $a_1, a_2, a_3, \ldots$ be an A.P. If $a_7=3$, the product $a_1 a_4$ is minimum and the sum of its first $n$ terms is zero, then $n !-4 a_{n(n+2)}$ is equal to :
A
24
B
$\frac{381}{4}$
C
9
D
$\frac{33}{4}$
2
JEE Main 2023 (Online) 31st January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The complex number $z=\frac{i-1}{\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}}$ is equal to :
A
$\cos \frac{\pi}{12}-i \sin \frac{\pi}{12}$
B
$\sqrt{2}\left(\cos \frac{\pi}{12}+i \sin \frac{\pi}{12}\right)$
C
$\sqrt{2} i\left(\cos \frac{5 \pi}{12}-i \sin \frac{5 \pi}{12}\right)$
D
$\sqrt{2}\left(\cos \frac{5 \pi}{12}+i \sin \frac{5 \pi}{12}\right)$
3
JEE Main 2023 (Online) 31st January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Among the relations

$\mathrm{S}=\left\{(\mathrm{a}, \mathrm{b}): \mathrm{a}, \mathrm{b} \in \mathbb{R}-\{0\}, 2+\frac{\mathrm{a}}{\mathrm{b}}>0\right\}$

and $\mathrm{T}=\left\{(\mathrm{a}, \mathrm{b}): \mathrm{a}, \mathrm{b} \in \mathbb{R}, \mathrm{a}^{2}-\mathrm{b}^{2} \in \mathbb{Z}\right\}$,
A
$\mathrm{S}$ is transitive but $\mathrm{T}$ is not
B
both $\mathrm{S}$ and $\mathrm{T}$ are symmetric
C
neither $S$ nor $T$ is transitive
D
$T$ is symmetric but $S$ is not
4
JEE Main 2023 (Online) 31st January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The absolute minimum value, of the function

$f(x)=\left|x^{2}-x+1\right|+\left[x^{2}-x+1\right]$,

where $[t]$ denotes the greatest integer function, in the interval $[-1,2]$, is :
A
$\frac{3}{4}$
B
$\frac{3}{2}$
C
$\frac{1}{4}$
D
$\frac{5}{4}$
JEE Main Papers
2023
2021
EXAM MAP