For the two positive numbers $$a,b,$$ if $$a,b$$ and $$\frac{1}{18}$$ are in a geometric progression, while $$\frac{1}{a},10$$ and $$\frac{1}{b}$$ are in an arithmetic progression, then $$16a+12b$$ is equal to _________.
If the shortest distance between the line joining the points (1, 2, 3) and (2, 3, 4), and the line $${{x - 1} \over 2} = {{y + 1} \over { - 1}} = {{z - 2} \over 0}$$ is $$\alpha$$, then 28$$\alpha^2$$ is equal to ____________.
Let $$\alpha \in\mathbb{R}$$ and let $$\alpha,\beta$$ be the roots of the equation $${x^2} + {60^{{1 \over 4}}}x + a = 0$$. If $${\alpha ^4} + {\beta ^4} = - 30$$, then the product of all possible values of $$a$$ is ____________.
The light rays from an object have been reflected towards an observer from a standard flat mirror, the image observed by the observer are :-
A. Real
B. Erect
C. Smaller in size then object
D. Laterally inverted
Choose the most appropriate answer from the options given below :