For three low density gases A, B, C pressure versus temperature graphs are plotted while keeping them at constant volume, as shown in the figure.
The temperature corresponding to the point '$$\mathrm{K}$$' is :
Figures (a), (b), (c) and (d) show variation of force with time.
The impulse is highest in figure.
An electron of a hydrogen like atom, having $$Z=4$$, jumps from $$4^{\text {th }}$$ energy state to $$2^{\text {nd }}$$ energy state. The energy released in this process, will be :
(Given Rch = $$13.6~\mathrm{eV}$$)
Where R = Rydberg constant
c = Speed of light in vacuum
h = Planck's constant
A square shaped coil of area $$70 \mathrm{~cm}^{2}$$ having 600 turns rotates in a magnetic field of $$0.4 ~\mathrm{wbm}^{-2}$$, about an axis which is parallel to one of the side of the coil and perpendicular to the direction of field. If the coil completes 500 revolution in a minute, the instantaneous emf when the plane of the coil is inclined at $$60^{\circ}$$ with the field, will be ____________ V. (Take $$\pi=\frac{22}{7}$$)