The Young's modulus of a steel wire of length $$6 \mathrm{~m}$$ and cross-sectional area $$3 \mathrm{~mm}^{2}$$, is $$2 \times 10^{11}~\mathrm{N} / \mathrm{m}^{2}$$. The wire is suspended from its support on a given planet. A block of mass $$4 \mathrm{~kg}$$ is attached to the free end of the wire. The acceleration due to gravity on the planet is $$\frac{1}{4}$$ of its value on the earth. The elongation of wire is (Take $$g$$ on the earth $$=10 \mathrm{~m} / \mathrm{s}^{2}$$) :
Choose the correct statement about Zener diode :
As shown in the figure a block of mass 10 kg lying on a horizontal surface is pulled by a force F acting at an angle $$30^\circ$$, with horizontal. For $$\mu_s=0.25$$, the block will just start to move for the value of F : [Given $$g=10~\mathrm{ms}^{-2}$$]
Two objects A and B are placed at 15 cm and 25 cm from the pole in front of a concave mirror having radius of curvature 40 cm. The distance between images formed by the mirror is _______________.