The threshold frequency of a metal is $$f_{0}$$. When the light of frequency $$2 f_{0}$$ is incident on the metal plate, the maximum velocity of photoelectrons is $$v_{1}$$. When the frequency of incident radiation is increased to $$5 \mathrm{f}_{0}$$, the maximum velocity of photoelectrons emitted is $$v_{2}$$. The ratio of $$v_{1}$$ to $$v_{2}$$ is :
For three low density gases A, B, C pressure versus temperature graphs are plotted while keeping them at constant volume, as shown in the figure.
The temperature corresponding to the point '$$\mathrm{K}$$' is :
Figures (a), (b), (c) and (d) show variation of force with time.
The impulse is highest in figure.
An electron of a hydrogen like atom, having $$Z=4$$, jumps from $$4^{\text {th }}$$ energy state to $$2^{\text {nd }}$$ energy state. The energy released in this process, will be :
(Given Rch = $$13.6~\mathrm{eV}$$)
Where R = Rydberg constant
c = Speed of light in vacuum
h = Planck's constant