Let [t] denote the greatest integer $$\le$$ t and {t} denote the fractional part of t. The integral value of $$\alpha$$ for which the left hand limit of the function
$$f(x) = [1 + x] + {{{\alpha ^{2[x] + {\{x\}}}} + [x] - 1} \over {2[x] + \{ x\} }}$$ at x = 0 is equal to $$\alpha - {4 \over 3}$$, is _____________.
If $$y(x) = {\left( {{x^x}} \right)^x},\,x > 0$$, then $${{{d^2}x} \over {d{y^2}}} + 20$$ at x = 1 is equal to ____________.
If the area of the region $$\left\{ {(x,y):{x^{{2 \over 3}}} + {y^{{2 \over 3}}} \le 1,\,x + y \ge 0,\,y \ge 0} \right\}$$ is A, then $${{256A} \over \pi }$$ is equal to __________.
Let $$y = y(x)$$ be the solution of the differential equation $$(1 - {x^2})dy = \left( {xy + ({x^3} + 2)\sqrt {1 - {x^2}} } \right)dx, - 1 < x < 1$$, and $$y(0) = 0$$. If $$\int_{{{ - 1} \over 2}}^{{1 \over 2}} {\sqrt {1 - {x^2}} y(x)dx = k} $$, then k$$-$$1 is equal to _____________.