$$\alpha = \sin 36^\circ $$ is a root of which of the following equation?
Let S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Define f : S $$\to$$ S as
$$f(n) = \left\{ {\matrix{ {2n} & , & {if\,n = 1,2,3,4,5} \cr {2n - 11} & , & {if\,n = 6,7,8,9,10} \cr } } \right.$$.
Let g : S $$\to$$ S be a function such that $$fog(n) = \left\{ {\matrix{ {n + 1} & , & {if\,n\,\,is\,odd} \cr {n - 1} & , & {if\,n\,\,is\,even} \cr } } \right.$$.
Then $$g(10)g(1) + g(2) + g(3) + g(4) + g(5))$$ is equal to _____________.
Let $$\alpha$$, $$\beta$$ be the roots of the equation $${x^2} - 4\lambda x + 5 = 0$$ and $$\alpha$$, $$\gamma$$ be the roots of the equation $${x^2} - \left( {3\sqrt 2 + 2\sqrt 3 } \right)x + 7 + 3\lambda \sqrt 3 = 0$$, $$\lambda$$ > 0. If $$\beta + \gamma = 3\sqrt 2 $$, then $${(\alpha + 2\beta + \gamma )^2}$$ is equal to __________.
Let A be a matrix of order 2 $$\times$$ 2, whose entries are from the set {0, 1, 2, 3, 4, 5}. If the sum of all the entries of A is a prime number p, 2 < p < 8, then the number of such matrices A is ___________.