1
JEE Main 2022 (Online) 27th June Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The set of values of k, for which the circle $$C:4{x^2} + 4{y^2} - 12x + 8y + k = 0$$ lies inside the fourth quadrant and the point $$\left( {1, - {1 \over 3}} \right)$$ lies on or inside the circle C, is :

A
an empty set
B
$$\left( {6,{{65} \over 9}} \right]$$
C
$$\left[ {{{80} \over 9},10} \right)$$
D
$$\left( {9,{{92} \over 9}} \right]$$
2
JEE Main 2022 (Online) 27th June Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The shortest distance between the lines

$${{x - 3} \over 2} = {{y - 2} \over 3} = {{z - 1} \over { - 1}}$$ and $${{x + 3} \over 2} = {{y - 6} \over 1} = {{z - 5} \over 3}$$, is :

A
$${{18} \over {\sqrt 5 }}$$
B
$${{22} \over {3\sqrt 5 }}$$
C
$${{46} \over {3\sqrt 5 }}$$
D
$$6\sqrt 3 $$
3
JEE Main 2022 (Online) 27th June Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\overrightarrow a $$ and $$\overrightarrow b $$ be the vectors along the diagonals of a parallelogram having area $$2\sqrt 2 $$. Let the angle between $$\overrightarrow a $$ and $$\overrightarrow b $$ be acute, $$|\overrightarrow a | = 1$$, and $$|\overrightarrow a \,.\,\overrightarrow b | = |\overrightarrow a \times \overrightarrow b |$$. If $$\overrightarrow c = 2\sqrt 2 \left( {\overrightarrow a \times \overrightarrow b } \right) - 2\overrightarrow b $$, then an angle between $$\overrightarrow b $$ and $$\overrightarrow c $$ is :

A
$${\pi \over 4}$$
B
$$-$$ $${\pi \over 4}$$
C
$${{5\pi } \over 6}$$
D
$${{3\pi } \over 4}$$
4
JEE Main 2022 (Online) 27th June Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The mean and variance of the data 4, 5, 6, 6, 7, 8, x, y, where x < y, are 6 and $${9 \over 4}$$ respectively. Then $${x^4} + {y^2}$$ is equal to :

A
162
B
320
C
674
D
420
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12