1
JEE Main 2021 (Online) 18th March Evening Shift
Numerical
+4
-1
Change Language
Let y = y(x) be the solution of the differential equation

xdy $$-$$ ydx = $$\sqrt {({x^2} - {y^2})} dx$$, x $$ \ge $$ 1, with y(1) = 0. If the area bounded by the line x = 1, x = e$$\pi$$, y = 0 and y = y(x) is $$\alpha$$e2$$\pi$$ + $$\beta$$, then the value of 10($$\alpha$$ + $$\beta$$) is equal to __________.
Your input ____
2
JEE Main 2021 (Online) 18th March Evening Shift
Numerical
+4
-1
Change Language
Let I be an identity matrix of order 2 $$\times$$ 2 and P = $$\left[ {\matrix{ 2 & { - 1} \cr 5 & { - 3} \cr } } \right]$$. Then the value of n$$\in$$N for which Pn = 5I $$-$$ 8P is equal to ____________.
Your input ____
3
JEE Main 2021 (Online) 18th March Evening Shift
Numerical
+4
-1
Change Language
Let f : R $$ \to $$ R satisfy the equation f(x + y) = f(x) . f(y) for all x, y $$\in$$R and f(x) $$\ne$$ 0 for any x$$\in$$R. If the function f is differentiable at x = 0 and f'(0) = 3, then

$$\mathop {\lim }\limits_{h \to 0} {1 \over h}(f(h) - 1)$$ is equal to ____________.
Your input ____
4
JEE Main 2021 (Online) 18th March Evening Shift
Numerical
+4
-1
Change Language
Let P(x) be a real polynomial of degree 3 which vanishes at x = $$-$$3. Let P(x) have local minima at x = 1, local maxima at x = $$-$$1 and $$\int\limits_{ - 1}^1 {P(x)dx} $$ = 18, then the sum of all the coefficients of the polynomial P(x) is equal to _________.
Your input ____
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12