1
JEE Main 2020 (Online) 8th January Evening Slot
Numerical
+4
-0
Change Language
If $${{\sqrt 2 \sin \alpha } \over {\sqrt {1 + \cos 2\alpha } }} = {1 \over 7}$$ and $$\sqrt {{{1 - \cos 2\beta } \over 2}} = {1 \over {\sqrt {10} }}$$

$$\alpha ,\beta \in \left( {0,{\pi \over 2}} \right)$$ then tan($$\alpha $$ + 2$$\beta $$) is equal to _____.
Your input ____
2
JEE Main 2020 (Online) 8th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$\alpha = {{ - 1 + i\sqrt 3 } \over 2}$$.
If $$a = \left( {1 + \alpha } \right)\sum\limits_{k = 0}^{100} {{\alpha ^{2k}}} $$ and
$$b = \sum\limits_{k = 0}^{100} {{\alpha ^{3k}}} $$, then a and b are the roots of the quadratic equation :
A
x2 + 101x + 100 = 0
B
x2 + 102x + 101 = 0
C
x2 – 102x + 101 = 0
D
x2 – 101x + 100 = 0
3
JEE Main 2020 (Online) 8th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let A and B be two events such that the probability that exactly one of them occurs is $${2 \over 5}$$ and the probability that A or B occurs is $${1 \over 2}$$ , then the probability of both of them occur together is :
A
0.20
B
0.02
C
0.01
D
0.10
4
JEE Main 2020 (Online) 8th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$I = \int\limits_1^2 {{{dx} \over {\sqrt {2{x^3} - 9{x^2} + 12x + 4} }}} $$, then :
A
$${1 \over 16} < {I^2} < {1 \over 9}$$
B
$${1 \over 8} < {I^2} < {1 \over 4}$$
C
$${1 \over 9} < {I^2} < {1 \over 8}$$
D
$${1 \over 6} < {I^2} < {1 \over 2}$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12