1
JEE Main 2020 (Online) 8th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$I = \int\limits_1^2 {{{dx} \over {\sqrt {2{x^3} - 9{x^2} + 12x + 4} }}} $$, then :
A
$${1 \over 16} < {I^2} < {1 \over 9}$$
B
$${1 \over 8} < {I^2} < {1 \over 4}$$
C
$${1 \over 9} < {I^2} < {1 \over 8}$$
D
$${1 \over 6} < {I^2} < {1 \over 2}$$
2
JEE Main 2020 (Online) 8th January Evening Slot
Numerical
+4
-0
Change Language
If $${{\sqrt 2 \sin \alpha } \over {\sqrt {1 + \cos 2\alpha } }} = {1 \over 7}$$ and $$\sqrt {{{1 - \cos 2\beta } \over 2}} = {1 \over {\sqrt {10} }}$$

$$\alpha ,\beta \in \left( {0,{\pi \over 2}} \right)$$ then tan($$\alpha $$ + 2$$\beta $$) is equal to _____.
Your input ____
3
JEE Main 2020 (Online) 8th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The system of linear equations
$$\lambda $$x + 2y + 2z = 5
2$$\lambda $$x + 3y + 5z = 8
4x + $$\lambda $$y + 6z = 10 has
A
a unique solution when $$\lambda $$ = –8
B
no solution when $$\lambda $$ = 2
C
infinitely many solutions when $$\lambda $$ = 2
D
no solution when $$\lambda $$ = 8
4
JEE Main 2020 (Online) 8th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$\alpha $$ and $$\beta $$ be the coefficients of x4 and x2 respectively in the expansion of
$${\left( {x + \sqrt {{x^2} - 1} } \right)^6} + {\left( {x - \sqrt {{x^2} - 1} } \right)^6}$$, then
A
$$\alpha + \beta = 60$$
B
$$\alpha - \beta = 60$$
C
$$\alpha + \beta = -30$$
D
$$\alpha - \beta = -132$$
JEE Main Papers
2023
2021
EXAM MAP