1
JEE Main 2019 (Online) 9th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $${a_1},{a_2},.......,{a_{30}}$$ be an A.P.,

$$S = \sum\limits_{i = 1}^{30} {{a_i}} $$ and $$T = \sum\limits_{i = 1}^{15} {{a_{\left( {2i - 1} \right)}}} $$.

If $$a_5$$ = 27 and S - 2T = 75, then $$a_{10}$$ is equal to :
A
47
B
42
C
52
D
57
2
JEE Main 2019 (Online) 9th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$A = \left[ {\matrix{ {\cos \theta } & { - \sin \theta } \cr {\sin \theta } & {\cos \theta } \cr } } \right]$$, then the matrix A–50 when $$\theta $$ = $$\pi \over 12$$, is equal to :
A
$$\left[ {\matrix{ { {{\sqrt 3 } \over 2}} & { - {1 \over 2}} \cr {{{ 1} \over 2}} & {{{\sqrt 3 } \over 2}} \cr } } \right]$$
B
$$\left[ {\matrix{ {{1 \over 2}} & -{{{\sqrt 3 } \over 2}} \cr {{{\sqrt 3 } \over 2}} & {{{ - 1} \over 2}} \cr } } \right]$$
C
$$\left[ {\matrix{ {{{\sqrt 3 } \over 2}} & {{1 \over 2}} \cr -{{1 \over 2}} & {{{\sqrt 3 } \over 2}} \cr } } \right]$$
D
$$\left[ {\matrix{ {{1 \over 2}} & {{{\sqrt 3 } \over 2}} \cr {-{{\sqrt 3 } \over 2}} & {{{ 1} \over 2}} \cr } } \right]$$
3
JEE Main 2019 (Online) 9th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
For any $$\theta \in \left( {{\pi \over 4},{\pi \over 2}} \right)$$, the expression

$$3{(\cos \theta - \sin \theta )^4}$$$$ + 6{(\sin \theta + \cos \theta )^2} + 4{\sin ^6}\theta $$

equals :
A
13 – 4 cos2$$\theta $$ + 6sin2$$\theta $$cos2$$\theta $$
B
13 – 4 cos6$$\theta $$
C
13 – 4 cos2$$\theta $$ + 6cos2$$\theta $$
D
13 – 4 cos4$$\theta $$ + 2sin2$$\theta $$cos2$$\theta $$
4
JEE Main 2019 (Online) 9th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The system of linear equations
x + y + z = 2
2x + 3y + 2z = 5
2x + 3y + (a2 – 1) z = a + 1 then
A
has infinitely many solutions for a = 4
B
has a unique solution for |a| = $$\sqrt3$$
C
is inconsistent when |a| = $$\sqrt3$$
D
is inconsistent when a = 4
JEE Main Papers
2023
2021
EXAM MAP